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Abstract: Multi-modal retinal image registration is often required to utilize the complementary
information from different retinal imaging modalities. However, a robust and accurate registration
is still a challenge due to the modality-varied resolution, contrast, and luminosity. In this paper,
a two step registration method is proposed to address this problem. Descriptor matching on
mean phase images is used to globally register images in the first step. Deformable registration
based on modality independent neighbourhood descriptor (MIND) method is followed to locally
refine the registration result in the second step. The proposed method is extensively evaluated on
color fundus images and scanning laser ophthalmoscope (SLO) images. Both qualitative and
quantitative tests demonstrate improved registration using the proposed method compared to
the state-of-the-art. The proposed method produces significantly and substantially larger mean
Dice coefficients compared to other methods (p<0.001). It may facilitate the measurement of
corresponding features from different retinal images, which can aid in assessing certain retinal
diseases.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

Retinal images reveal biological information about the retina, which are examined by ophthal-
mologists to diagnose and monitor the progression of a variety of diseases, including diabetic
retinopathy, age-related macular degeneration, and glaucoma [1–3]. Retinal images are often
acquired by different imaging modalities in order to have multiple representations for the eye [4].
For example, color fundus photography and Scanning Laser Ophthalmoscope (SLO) [5] are
two commonly used techniques for retinal image acquisition in ophthalmology [6], where the
formal one uses the imaging light of red, green and blue wavebands and the latter one uses single
wavelength laser light (see Fig. 1 (a) and (b)). Therefore, the retinal blood vessels on SLO images
have higher contrast to the background than the ones on color fundus images, while the color
images have a larger field-of-view and better discrimination between artery and vein [7]. In a
screening setting, ophthalmologists or computer-aided diagnosis system may also evaluate exams
from different screen rounds. In the clinical review of disease progression, longitudinal retinal
image registration is crucial which establishes a pixel-to-pixel correspondence among the images
of different modalities. It provides extra assistance for observers to find the early and subtle signs
of abnormalities on one type of images and confirm their findings in the same area of other
images.
To make temporal analysis possible or to investigate the same findings from different retinal

images, an image registration technique is necessary. However multi-modal retinal image
registration is still a challenge due to the modality-varied resolution, contrast and luminosity
between different modality images (i.e. color and SLO retinal images). In the last few years,
registration approaches proposed in the literature for retinal images can be summarized into
two categories: area-based methods and feature-based method. An area-based method aims to
extract intensity-based features from the overlapped area of two images, then optimizes some
similarity measurements such as cross correlation [8, 9], mutual information [10–12] and/or the
combination of both of them [13] to obtain the best alignment. A feature-based approach tires to
extract descriptive features for finding the correspondence between the images. Commonly-used
descriptors include the position of retinal landmarks like vascular bifurcation points [14], the
optic disc center [15], and the fovea center [16]. Moreover, high-level feature descriptors such
as scale invariant feature transformation (SIFT) [17], speeded-up robust features (SURF) [18],
histograms of oriented gradients (HOG) [19] and local binary patterns (LBP) [20] are proposed
for registration. An objective function is used based on the correspondence between the extracted
feature descriptors to find the best transformation parameters. One of the recent methods [21]
was proposed to detect landmarks (corner points) as a preprocessing step. Afterwards, HOG was
calculated from the neighborhood of each corner point. During the registration, random sample
consensus (RANSAC) was used to remove the incorrect correspondences to achieve the best
affine transformation between images.
There are several limitations when using the previous techniques for the registration of color
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Fig. 1. The retina of the same subject acquired by (a) color fundus camera (Canon Cr-1 Mark
II) and (b) Scanning Laser Ophthalmoscope (Spectralis HRA OCT). Retinal landmarks such
as blood vessel and the optic disc have different representations on both modalities. (c) and
(d) are mean phase images derived from (a) and (b), respectively.

images and SLO images. First of all, the representation of retinal landmarks on both types of
image is different. The optic disc is bright on color images but dark on SLO image. On color
images, the central reflection of blood vessels is visible on arteries rather than on veins, while
on SLO images it can be clearly seen on both types of vessels. Therefore, area-based methods
which rely on measuring the similarity between two images are difficult because the similarity
metric is not easy to define. In addition, tiny blood vessels on SLO images are depicted more
clearly than those on RGB images and the vascular structures on both images might have a quite
large differences. Thus feature-based methods which use vascular bifurcation points [22, 23] and
vessel edge map [24] are not ideally applicable

In this paper, we propose a new framework formulti-modal retina image registration (specifically
of color and SLO images), which addresses the issues of aligning images of different modalities.
The methodology consists of two main steps: 1) descriptor matching and 2) deformable
image registration. Descriptor matching is used on mean phase images to estimate the global
transformation (e.g affine) between between images. The descriptor is densely calculated on
mean phase images so that the matching step is invariant to contrast differences. The modality
independent neighborhood descriptor (MIND) based deformable registration method proposed
by Heinrich et al. [25] is then followed to refine the registration result locally as the deformable
registration could achieve better estimation of the transformation than the affine registration.

2. Method

2.1. Descriptor matching

2.1.1. Modality-invariant feature descriptors

The transformation parameters for image registration are derived by matching the feature
descriptors extracted from the images. In order to address the effect of contrast and illumination
difference between color and SLO images, we extract descriptors from mean phase images, which
are independent on pixel intensity [26]. Firstly, an image f (x) is converted to a phase image
ϕ(x) [26] via the followed transformation:
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Fig. 2. Descriptor matching result between a color image (moving image) and an SLO image
(fixed image, e.g. acquired by a Spectralis HRA OCT camera). (a) and (c) show matching
pairs based on HOG and HOG-MP with the RANSAC process; (b) and (d) are the matching
result using an affine transformation based on HOG and HOG-MP, respectively.

ϕ(x) = atan( |fR(x)|
fe(x)

), (1)

where fR(x) is the Riesz transform proposed by Felsberg et al. [26] of f (x) that represents the odd
component of f (x), and fe(x) is the even component of f (x) [27]. In the proposed framework,
fR(x) and fe(x) are measured by a set of log-Gabor filters [28], which have zero DC component
with tunable bandwidth in the Fourier domain so that the filter responses are independent of
image intensity. In addition, instead of calculating local phase at a certain empirical scale, we use
log-Gabor filters with multiple scales σ to derive ϕσ(x) [27]. Then we compute the average of
the local phase images, named mean phase image ϕ̄(x), for the feature descriptors extraction. ϕ̄(x)
averages phases over all scales, and serves as an identifier. For example, a step corresponds to
ϕ = 0 and a peak to ϕ = π

2 . Essentially, it provides contrast-invariant measurement for descriptor
extraction (see Fig. 1 (c) and (d)).

On the mean phase images, we densely compute the histogram of oriented gradients (HOG-MP)
as the feature descriptors for image matching [19]. A square block of size MN×MN around each
selected pixel is drawn for gradient calculation. The distance between each selected points is 5
pixels in all dimensions. Every block containsM×M cells which have the size of N×N. For the
pixels in each cell, the histogram of the gradient in twelve directions (from 0 to 360 with step size
30) is obtained to extract the local structural information inside the block, which yields 12×N×N
feature descriptors for each selected point. We choose M=11 and N= 3 in our experiments. Miri
et al. [21] applied the HOG calculation on detected interesting points from the original intensity
images. However, the HOG-based descriptor matching step may suffer from the large contrast
differences between multi-modal images. The detection accuracy of the interesting points may
also influence the matching results.

2.1.2. Matching method

We first resize the moving images into the same size of fixed image (see Fig.2(a) and (c)). One can
see that the size of the same vessel and disc from different images are not the same. Since the HOG-
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Fig. 3. Five types of eye images need to be registered. The images of Spectralis fundus
camera are the fixed image with size of 1536×1536 pixels; images from Canon, Topcon,
EasyScan and Nidek are moving images (registered to Spectralis) with the size of 3456×2403,
2408×1536, 1024×1024 and 3744×3744 pixels, respectively. The images are shown in
relative pixel size.

MP is densely calculated, we use the approximate nearest neighbor searchmethod [29] to efficiently
match descriptors. Similar to [30], this method is used twice (searching from the fixed image to the
moving image and vice versa) to exclude outliers. Only the correspondences that exists in the two
matching results is left. We used the their implmentation and parameter settings for approximate
nearest neighbor search method (see https://people.eecs.berkeley.edu/katef/LDOF.html) . Then
random sample consensus is applied to further remove the incorrect correspondences. An affine
transformation is estimated and updated during the RANSAC process [21]. The final affine
transformation is then applied to the fundus images.
The descriptor matching results based on HOG-MP and HOG are compared in Fig. 2. It can

be observed that the HOG-MP based matching shows good correspondence between color and
SLO images, especially around the positions with structures (e.g. vessel bifurcation and crossing
points), as expected.

2.2. Deformable image registration

An affine transformation, as a first-order transformation, is not flexible enough to model the
deformation between color images and SLO images. A second order quadratic transformation was
proposed to improve the deformation modeling [31–33]. However, local deformations caused
by the eye movements and breathing during acquisition can not be modeled by the quadratic
transformation effectively. Therefore, a more sophisticated model is required in this scenario.

A deformable transformation or spatially varying deformation model is able to model the local
deformation and therefore used in many medical image registration tasks (see the recent review
paper [34]). The deformable transformation W is defined as follow:

W(x) = x + u(x) (2)

where each position x in the image is assigned a displacement u.
Besides the transformation model, a proper similarity metric and optimization scheme are

essential parts in the image registration pipeline [34]. We adopt the pipeline from [25], in which
the similarity metrics is defined based on modality independent neighborhood descriptor (MIND)
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as follow:
E(u) =

∑
Ω

|MINDf(x) −MINDm(x + u(x))|2 (3)

where Ω defines the registration region (the entire image in our case). The optimization (mini-
mization in our case) of similarity metrics for the high-dimensional deformable transformation W
is ill-posed, and regularization is generally necessary. Same as [25], we add a local regularization
term to define the objective function:

E(u) =
∑
Ω

|MINDf(x) −MINDm(x + u(x))|2 + α ‖∇u‖ (4)

This objective function is then optimized by the Gaussian-Newton method. The MIND based
method is reported to be invariant to contrast differences and suitable for multi-model registration
problems [25]. We empircally set weighting parameters α = 0.2 (same as [35]) for all following
experiments.

3. Experiments and result

3.1. Material

The proposed method is validated on a set of multi-modal and multi-vendor images. The dataset
contains a total of 600 retinal images acquired by 5 fundus cameras (see Fig. 3), including (1)
Canon Cr-1 Mark II (Canon); (2) Topcon NW300 (Topcon); (3) Nidek AFC-230 (Nidek); (4)
EasyScan (i-Optics) and (5) Spectralis HRA OCT (Heidelberg) (the camera specifications are
shown in Table 1). The first three are of the color fundus cameras and the last two are of the
SLO cameras. The acquisition by each camera was done on the right eye of 12 healthy subjects
with 5-times successive acquisitions on both the center of the fovea and optic-disc (OD), which
produces 120 images (half of them fovea-centered and half of them OD centered) for each camera.
The images are varied with each other slightly in terms of luminosity difference, translation
and rotation. In addition, the exact region of the retina captured by each image is different. For
example, for some of the fovea-centered images, the optic disc might not be completely captured.
Since the Spectralis images have the smallest field-of-view (30◦), they are considered as the fixed
image for registration. The images of other four cameras (the moving images) are assigned to
the corresponding Spectralis images (the same subject with fovea/OD centered). To be more
specific, for one subject, the i-th acquired images using other cameras are only registered to the
i-th acquired Spectralis image. Since the images were taken independently, it is equivalent to
randomly pair these image yielding 600 (120×5) image pairs.
For processing, we removed the black region of the Canon and Topcon images (see Fig. 3)

to make them into squared images as the fixed images are (see the red dashed lines). It is an
automatic process and we used the image center as the square center. After that, all moving
images are resized to the same size of the fixed image. These images are then used for descriptor
matching and deformable registration. The cubic B-spline interpolation is used during the resize
process. Because of the high contrast of the blood vessels, only the green channel of the fundus
images is used for the registration where the same idea was adopted by [21]. The flowchart of our
method that adopted in the experiments can be seen in Fig. 4.

3.2. Registration between color fundus images and SLO images

3.2.1. Qualitative comparison

We compared our proposed method (method-p) with the method proposed by Miri et al. [21](
method-1). In [21], all images are brought into the same resolution before the registration. A
circular Hough transformation is first used to localize the optic discs. It results in the center
and radius of the optic discs in the moving (cf , rf ) and the fixed (co, ro) images. The moving
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Table 1. The detail of the fundus cameras that are used for registration.The examples shown
in the last column are cropped from the original one to show the same region on one retina,
where the luminosity and contrast variation among different cameras can be observed.

Camera Resolution Type Field-of-view Number of Examplename image

Canon Cr-1 Mark II 3456×2304 Color 45 ° 120

Topcon NW300 2048×1536 Color 45 ° 120

Nidek AFC-230 3744×3744 Color 45 ° 120

EasyScan 1024×1024 SLO 45 ° 120

Spectralis HRA OCT 1536×1536 SLO 30 ° 120

Fig. 4. Flowchart of our method.
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Fig. 5. Registration results between a SLO and a Canon image. (a)-(c) are from method-1,
method-2 and method-p; (d)-(f) are sub-regions from the red box of (a)-(c). The yellow
arrows point out the misalignment.

images are then scaled to the fixed images by the ratio of R = ro/rf . However, this method is
not applicable if the optic disc is not at the center of the image (see Fig. 2(a)). Alternatively, we
calculated the rescale ratio R based on the affine transformation matrix A that we derived from
the descriptor matching step of method-p:

R =
√
(A−1

1,1)2 + (A
−1
2,1)2 (5)

where A1,1 and A2,1 are the elements of the matrix A.
We followed the implementation from [21] for the method-1 (except for the disc localization).

Their method was optimized for registering fundus images (Nidex and Topcon) to SD-OCT
images. We used their parameter settings for our registration tasks. We also tried different
parameter settings of method-1 for our dataset but did not find any significant improvment. For
comparison we also evaluated the registration performance only based on our intermediate step,
the descriptor matching (method-2).
The registrations between Spectralis and the other four types of images are shown in Fig. 5,

Fig. 6, Fig. 7, and Fig. 8. One can clearly see the misalignment (pointed by the yellow arrows)
by using method-1 and method-2. It proves that only using descriptor matching with an affine
transformation is not enough. The results showed that using a deformable transformation
successfully registered these images without any noticeable misalignment.

3.2.2. Quantitative comparison

In retina imaging, many systemic diseases including diabetes and hypertension are reflected by
blood vessels changes such as being tortuous, narrowing and showing leakage. Blood vessels are
key landmarks for inspection. To objectively evaluate the registration, we measure the matching
effect between blood vessels from pairs of images.

To obtain the blood vessel segmentation, we applied the method proposed by Zhang et al. [36].
This technique employs a set of multi-scale Gaussian derivative filters rotated to different
orientations in so-called “orientation scores”. An orientation score is a 3-D space with axis: the
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Fig. 6. Registration results between SLO and EasyScan image. (a)-(c) are from method-1,
method-2 and method-p; (d)-(f) are sub-regions from the red box of (a)-(c). The yellow
arrows point out the misalignment.

Fig. 7. Registration results between SLO and Nidek image. (a)-(c) are from method-1,
method-2 and method-p; (d)-(f) are sub-regions from the red box of (a)-(c). The yellow
arrows point out the misalignment.
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Fig. 8. Registration results between SLO and Topcon image. (a)-(c) are from method-1,
method-2 and method-p; (d)-(f) are sub-regions from the red box of (a)-(c). The yellow
arrows point out the misalignment.

spatial coordinates x, y and the orientation θ, in which vessels with different orientations lay
in different planes. The benefit of this construction is that difficult cases like vessel crossings
are now solved because they are disentangled. The multi-scale nature of the Gaussian derivative
filters ensures that disentangled vessels with various sizes are equally enhanced. Afterwards,
the 3D structure is projected onto the spatial plane by taking the maximum filter response over
all orientations per position. After we obtain this 2D enhanced vessel map, a proper threshold
value is applied on the enhanced image to obtain a binary vascular map. Subsequently, vessels
within the optic disc region are eliminated by the optic-disc mask. An iterative thinning algorithm
is used to obtain the centerline of the vasculature. Junction points like vessel branchings and
crossings are also removed, thus pixels connected to each other represent an individual vessel
segment. In this study, we used the vessel segmentation tool which was trained on a different
retinal image dataset with blood vessels manually annotated. To apply it to our 6 camera image
database, we rescaled all images to the same pixel size as the training data using the size of optic
disc as the reference.
To evaluate the performance of the registration methods, we calculate the Dice coefficient:

DSC =
2|X ∩ Y |
|X | + |Y | , (6)

where X and Y are the vessel binary maps of fixed and moving images after registration, |.|
represents the number of vascular pixels and |X ∩ Y | is the number of overlapped pixels between
X and Y .
Table 2 summarizes the Dice coefficient measures from three different methods on registering

four manufacturer datasets to the Spectralis dataset. Our proposed method-p significantly
outperforms the compared methods with higher means and smaller standard-deviations (std) in
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Table 2. Dice coefficient from three different registration methods
Method Canon Easyscan Topcon Nidek All together
method-1 0.68±0.08 0.53±0.19 0.65±0.16 0.53±0.17 0.60±0.17
method-2 0.66±0.06 0.65 ±0.09 0.65±0.09 0.59±0.09 0.62±0.09
method-p 0.78±0.05 0.73 ±0.09 0.72±0.06 0.73±0.11 0.74±0.08

Fig. 9. The box-plot of the Dice coefficients of our proposed method and the state-of-art
method (method-1).

all four datasets. One can also see that method-p outperforms method-1 on all cameras in terms
of the means and stds. The smaller std indicates that our proposed method is more robust than
method-1. Fig. 9 shows a box-plot of Dice coefficients of method-p and method-1 on images from
different cameras.
We also computed failure rates for different methods. As visually the large vessels on cases

with a Dice less than 0.5 barely match, therefore we regards the registration is a failure. The
failure rates for method-1, method-2, and method-p are 19.5%, 10.6% and 1% respectively. Our
takes about 40s for each registration using a PC with Windows 10 64-bit OS, 32 GB RAM, and
Intel(R) Core(R) CPU 4.20 GHz. For evaluation, the vessel segmentation takes about 30s per
image.

4. Discussion and conclusion

In this paper, a robust and effective two-step framework is proposed to register multi-modal
retinal images. The method of descriptor matching was used to register images globally in the
first step. After that, a deformable registration was applied to locally refine the registration result
in the second step.
In the descriptor matching process, in order to avoid the the intensity difference between

different modalities, we first transferred the intensity images into mean phase images. Mean
phase images are invariant to the intensity difference and often used to represent structure
information of images. Since blood vessels share the same structure across different modalities,
we densely calculate the HOG measure on mean phase (so called HOG-MP) image rather than
only on interesting points of intensity image [21]. Points detection errors are eliminated by our
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matching process. Furthermore, our registration framework does not need the vessel segmentation
compared to [37, 38]. The vessel segmentation errors can also be eliminated.

We applied an affine transformation under the RANSAC framework in the descriptor matching
step. However, the affine transformation is not flexible enough tomodel the high-order deformation
between images. We used the deformation registration method based on MIND to improve the
registration accuracy. MIND is also a descriptor that is invariant to modalities. It is based on the
idea of self-similarity [39]. Compared to HOG-MP, the MIND descriptor however is not unique
enough to satisfy the descriptor matching requirement. That is why we did not use MIND in the
first step. On the other hand, the HOG-MP is not applicable in the deformation registration step
due to the high computation costs.

The vessel segmentation that are used in this study is one of state-of-the-art techniques proposed
in literature, which was validated on public datasets including DRIVE, STARE and CHASE DB1
giving an average of 95% accuracy. The vessel maps produced by the segmentation technique
might not be similar enough, but the DICE coefficient is still able to quantify the quality of
registration, as it measures the overlapping of two vessel trees instead of a single vessel. The
evaluation is objective and does not require human interaction.
Our method is robust on health objects. For images obtained from pathological subjects, we

would expect our method would perform similarly since findings such as hemorrhage will show
up on all images. However, in the future, we will investigate the performance on images with a
large time interval where findings look differently across images.
We compared our method with the state-of-art methods on registering multi-model fundus

images. Both qualitative and quantitative evaluations showed that our proposed method outper-
forms other methods. Our multi-model imags are at either fovea or optic-disc center, we haven’t
found any significant differences from the registration performance for both type of images.
Our method generally works well if the corresponding structures (e.g. vessels) can be seen in
both fixed and moving images. The evaluation is based on blood vessel segmentation across
modalities. The inaccurate segmentation may influence the comparison of the Dice measures. In
future work, more evaluations should be introduced. We may invite a specialist to manually select
the corresponding points to set up the “golden standard” as [40] did. Furthermore, a subjective
comparison may be needed [41] to evaluate the registration for the purpose of clinical application.
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